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Abstract. Starting from the static Fukuyama–Lee–Rice equation for a three–dimensional incommensurate
charge density wave (CDW) in quasi one–dimensional conductors a solvable model for local phase pin-
ning by impurities is defined and studied. We find that average CDW energy and average pinning force
show critical behaviour with respect to the pinning parameter h. Specifically the pinning force exhibits
a threshold at h = 1 with exponent β = 2. Our model exemplifies a general concept of local impurity
pinning in which the force exerted by the impurity on the periodic CDW structure becomes multivalued
and metastable states appear beyond a threshold. It is found that local impurity pinning becomes less ef-
fective at low temperatures and may eventually cease completely. These results are independent of spatial
dimensionality as expected for local impurity pinning. Comparison with Larkin’s model is also made.

PACS. 71.45.Lr Charge-density-wave systems – 71.55.Jv Disordered structures; amorphous and glassy
solids – 72.15.Nj Collective modes (e.g., in one-dimensional conductors)

1 Introduction

In charge density waves (CDW) which appear below the
Peierls transition temperature in quasi one–dimensional
metals [1], pinning of the order parameter phase at point
defects is an important effect. Phase pinning results from
the electrostatic coupling between the spatially periodic
charge modulation in the CDW and the electric poten-
tial of an impurity. The phase ϕ determines the position
of the CDW with respect to the host lattice. The energy
and force contributions of an individual impurity become
periodic functions of ϕ. Distortions of the phase near the
impurity produce a positive elastic energy. By properly ad-
justing the phase pattern near the impurity a net pinning
force can be possible. Phase pinning in CDW is not fully
understood at present. Well known is the weak or collec-
tive pinning limit. In this case each impurity only slightly
distorts the local phase, however, many impurities act co-
herently in a macroscopic metastable Lee–Rice domain
[2,3] and produce a small pinning force. This mechanism
has its analogue in pinning of flux lines in type II super-
conductors [4,5]. The opposite limit of strong pinning is
obtained when the pinning strength of a single impurity
is so large that the elastic energy of local phase defor-
mations is negligible [2]. Intermediate concepts have also
been explored [6–8].

In this paper we point out a number of special features
for local phase pinning by impurities. Local phase pinning
describes pinning effects linear in the concentration of im-
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purities. We study a three–dimensional incommensurate
CDW within a solvable model. We find that the averaged
CDW energy shows a weak singularity as function of the
pinning parameter h at h = 1 characterized by an ex-
ponent b which is calculated. The formal limit of strong
pinning is reached only for very large h. The pinning force
has a threshold at h = 1, i.e., it vanishes for h ≤ 1 and
then starts with a “critical” exponent similar to a phase
transition. Our model realizes a general concept of local
impurity pinning when the force exerted by the impurity
on the periodic structure (CDW in our case) becomes mul-
tivalued and metastable states appear [5]. In a single chain
model a similar problem has been considered recently in
[9,13] neglecting the screening.

Larkin’s model [9] has been extended in [10] to in-
clude dynamics. It has meanwhile evolved into a complete
concept of CDW and SDW dynamics [11,12]. Here, we
restrict ourselves to the static properties of a complemen-
tary model.

The model is introduced in Section 2. It is exactly
solved for average energy (Sect. 3) and average pinning
force (Sect. 4) in the screened limit when an abundance of
quasi–particles eliminates Coulomb forces. The latter act
between the local charges that are produced by phase de-
formations in CDW. In Section 5 we discuss descreening
in semiconducting CDW. We show that in lowering the
temperature local impurity pinning becomes less and less
effective and may even cease completely. Finally Section
6 gives a detailed account of Larkin’s model [9] and its
relation to our results.
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2 Pinning model

Following [3] we write the phase dependent part of the
static energy density of incommensurate CDW plus one
impurity at position xi as

H =
1

2
K

{(
∂ϕ

∂z

)2

+
v2

t1

v2
F

(
∂ϕ

∂x

)2

+
v2

t2

v2
F

(
∂ϕ

∂y

)2
}

+V0δ(x− xi) cos(Qxi + ϕ(x)). (1)

The stiffness constant in the fully screened limit and for a
rectangular lattice is

K =
~vF

2πat1at2
, (2)

where atν are the interchain distances of the chains which
run along the z–direction. The Fermi velocities for the
anisotropic metal are denoted vF, vt1 and vt2, respec-
tively. In terms of the Fourier component V (Q) of the
short range impurity potential (Q denotes the CDW nest-
ing vector) and in terms of the half gap ∆, the electron
density n0, Fermi energy εF, and electron–phonon cou-
pling constant λQ the pinning amplitude V0 is given by
V0 = n0V (Q)∆/(4λQεF) [14]. V0 has dimension of en-
ergy. We neglect dislocation lines in the CDW lattice and
consider the phase to be unique over the crystal. As in
[3] we perform an isotropy scaling in the static CDW en-
ergy E =

∫
d3xH according to z′ = z, x′ = xvF/vt1, and

y′ = yvF/vt2 and use the old names. Then H becomes

H =
1

2
K(∇ϕ)2 + V0δ(x− xi) cos(Qx + ϕ), (3)

with K = ~vt1vt2/(2πat1at2vF), while V0 remains un-
changed. The formal solution of the Poisson equation fol-
lowing from (3) gives divergent energy in three dimensions.
We introduce a cutoff ξ which is of the order of the am-
plitude coherence length ~vF/∆ into our model by setting
ϕ(|x − xi| ≤ ξ/2) ≡ ϕi. Thus the phase in our quasi–
isotropic setting is constant inside a sphere of diameter ξ
centered at the impurity. ξ is a constant parameter of the
model. This case corresponds to the following modified
inhomogeneity in the Poisson equation associated to (3):

−V0δ(|x− xi| − ξ/2)
sin(Qxi + ϕi)

πξ2
· (4)

For convenience we fix the phase at infinity by requiring
ϕ∞ = 0. A phase ϕ∞ 6= 0 can be trivially transformed
away from all our equations, especially from the energies
to be calculated. The latter, therefore, do not directly re-
flect pinning. Phase pinning, however, shows up in the
pinning force [5,13]. The solution of the modified Poisson
equation for the phase is

ϕ(|x− xi| ≥ ξ/2) =
ξ

2

ϕi

|x− xi|
· (5)

In (3) Qxi acts as a random phase uniformly distributed
in (−π, π) and we will denote it as Γ . By averaging the

total energy over Γ we obtain the CDW energy per pin of
a random ensemble of local pins. The total CDW energy
associated with the solution ϕ(x) becomes E = πKξϕ2

i +
V0 cos(Γ + ϕi). With the pinning parameter

h ≡
V0

2πKξ
(6)

the energy can be expressed as

E = V0

(
ϕ2
i

2h
+ cos(Γ + ϕi)

)
. (7)

Finally the phase ϕi follows from the requirement
∂E/∂ϕi = 0 or

ϕi = h sin(Γ + ϕi). (8)

This is an implicit equation for ϕi in terms of Γ . Equation
(8) also appears in the mean field model of Fisher [15] for
the multivalued static solutions at h > 1 in the presence
of an external field. Knowing ϕi(Γ ) the reduced averaged
CDW energy e(h) for example can be expressed as

e(h) ≡ 〈E〉/V0

=
1

2π

∫ π

−π
dΓ{

h

2
sin2(Γ + ϕi(Γ )) + cos(Γ + ϕi(Γ ))}.

(9)

It is noted that (8) can also be obtained without consid-
ering ϕi as a variational parameter by starting from the
inhomogeneous phase equation. We summarize the prin-
cipal features and assumptions of our model:

1. Three–dimensional Fukuyama–Lee–Rice model with
one randomly placed impurity.

2. Averaging over the impurity position amounts to an
ensemble average over many local, i.e., independent
pins. Weak pinning is excluded.

3. Neglect of quantum tunneling and thermal fluctua-
tions. For a discussion of the corresponding conditions
see [9]. It is also noted that V0 � kBT holds for strong
pins.

The following two sections derive exact results from this
model.

3 Average CDW energy

We begin by investigating the average CDW energy in the
equilibrium state. This also serves as an introduction to
our method of solution.

Our model is nontrivial because of equation (8) and its
variety of solutions. For h < 1 there exists one and only
one solution ϕi for every Γ . Writing (8) as

w = Γ + h sinw; w ≡ ϕi + Γ, (10)
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Fig. 1. Display of the solutions of the self consistency equation
(10) in the form w = Γ + h sinw for h = 3, i.e., not too far
above the pinning threshold h = 1. The circles 1, 2, 3 indicate
the solutions for −Γc < Γ ≤ Γc. (Γc,−wc) is bifurcation point.
The pinning force results from the vertical transition from −wc

to wB on the upper branch.

the solution w(Γ ) maps the interval −π ≤ Γ < π one to
one onto −π ≤ w < π. It is then easy to calculatee(h ≤ 1).
Transforming the integration over Γ in (9) to an integra-
tion over w using dΓ/dw = 1− h cosw gives immediately

e(h ≤ 1) =
1

2π

∫ π

−π
dw(1− h cosw)

[
h

2
sin2w + cosw

]
= −

h

4
· (11)

This argument fails for h > 1 when more than one solu-
tion of (10) exists. For h > 1 at least three solutions exist.
For h = 3 the situation is depicted in Figure 1. In general
these solutions give different energies. The physical rele-
vant solution is the one with the lowest energy. Choosing
this solution for each Γ defines the integration path.

Formally the average energy above the threshold can
be expressed as

e(h) =
1

2π

∑
ν

[
sinw −

h

4
w −

3h

8
sin 2w −

h2

6
sin3w

]w(ν)
a

w
(ν)
i

.

(12)

(w
(ν)
i , w

(ν)
a ) are the endpoints of appropriate integration

intervals along the w–axis giving minimum energy. The

endpoints of the path are w
(1)
i = −π, w

(1)
a = −wA and

w
(2)
i = wA, w

(2)
a = π where wa = sin(wA), i.e., there is a

jump from −wA to wA at Γ = 0.
The value h = 1 is a singular point in the following

sense: the dependence of e(h) + h/4 on h changes tak-
ing on locally the form of a power law with exponent b.

Equation (12) can be used to calculate the exponent b
defined by

e(h) +
h

4
∼ εb, ε ≡ h− 1� 1. (13)

The value of wA near h = 1 can be found perturbatively.
To lowest order with respect to ε it is wA =

√
6ε. Equation

(12) then gives

e(h) +
h

4
=

8

35π

√
6 ε7/2, (14)

i.e., the exponent is b = 7/2. To complete the analytical
investigations, the behaviour for h� 1 is studied. In this
limit the value of wA is about ±π(1− 1/h) which gives

e(h) = −1 +

(
π2

6
− 1

)
/h, h� 1. (15)

The usual strong pinning limit 〈E〉sp = −V0 is thus
asymptotically approached albeit at a rather slow rate.
It is also noted that for |arccos(1/h) −

√
h2 − 1| > π

additional solutions exist which lead to more and more
metastable states.

4 Average pinning force

Physically more important than the average energy e(h)
is the average pinning force the CDW experiences when it
is moved adiabatically. This force is

F (h) = −
Q

2π

∫ 2π

0

dΓ
dE(w(Γ ), Γ )

dΓ
≡ QV0 f(h). (16)

The pinning force F (h) vanishes for h ≤ 1 since dE/dΓ
then is a single valued and periodic function over the in-
terval −π ≤ Γ < π. Physically it means that the pinning
forces from different local impurities cancel [5].

Above threshold transitions between branches of dif-
ferent energy occur. Using the energy profile

e(w,Γ ) ≡
E

V0
=

(w − Γ )2

2h
+ cosw (17)

and

de(w(Γ ), Γ )

dΓ
= −

w − Γ

h
= sinw, (18)

the reduced force f(h) can be treated in analogy to the
energy. The result is

f(h) =
1

2π

[
h

4
(cos 2wB − cos 2wc)

− (coswB − coswc)

]
. (19)
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Here wB is the point of the energy minimum e(wB, Γc)
into which a transition occurs from the critical metastable
state characterized by a horizontal inflection point in the
energy profile at (wc, Γc). The r.h.s. of (19) is just the
difference in energy of these two states divided by 2π.

It is possible to give a more geometrical description of
this process and the resulting force: Above threshold the
force from shifts of the CDW by less than x = Γc/Q where
Γc is given by Γc =

√
h2 − 1−wc with wc = arccos(1/h))

is elastic. Larger shifts populate metastable states.
For Γc < π the averaging path is from −π to −wc and
then from wB to π as shown in Figure 1. It runs over
the bifurcation point (Γc,−wc) and jumps to the upper
branch starting at wB = Γc + h sin(wB). This is clearly
seen in the energy profile e(w,Γ ).

Near h = 1 one can use the perturbative results wc =√
2ε, wA = 2wc to find

F (h) =
9

4π
QV0 ε

2, ε� 1. (20)

Thus pinning sets in at the threshold h = 1 with exponent
β = 2.

For larger h the situation is more complicated since
more metastable states exist. The averaging path now ex-
tends over n periods in order to sample all metastable
states. The jump is from (Γc,−wc) to the point (Γc, wB)
which gives the lowest energy. wB is that value on the
curve Γ + h sin(w) that lies nearest to (2n − 1)π where
E(w) has its absolute minimum. The energy difference is
E(−wc)−E(wB) with E(±wc) = V0(h/2+1/(2h)). When-
ever Γc crosses a value 2πn (n = 1, 2, 3, ...), i.e., when

h = hn where hn is found from
√
h2
n − 1−arccos(1/hn) =

2nπ (approximate solution hn = 2nπ + π/2) the wind-
ing number changes from n to n+ 1 and f(h) is reduced
correspondingly. This leads to a saw–toothed structure
of f(hn−1 < h ≤ hn) = (h/2 + 1/(2h) − E(wB))/(2πn)
(h0 ≡ 1). Thus f(h) oscillates around the asymptotic value
1/2 with approximate period 2π and decreasing peak to
peak amplitude δf(hn) = f(hn)/(n+1). Figure 2 displays
the reduced pinning force f(h). It is noted that the un-
scaled force (16) contains the pinning amplitude V0 and
does not saturate for h→∞ as in Larkin’s model [9].

The threshold behaviour of the pinning force is also
found in the one–dimensional pinning model in [9,13] and
is a general feature of local impurity phase pinning [5].

4.1 Pinning parameters

The relation of the pinning parameter h to the usual mea-
sure of pinning strength will now be discussed. According
to (7) and taking the isotropy scaling into account, h is
given by:

h = V0
at1at2vF

vt1vt2~ξ
· (21)

The standard measure [16] for impurity energy to elas-
tic energy in an anisotropic three–dimensional CDW

Fig. 2. Reduced pinning force f in units of QV0 as function of
pinning parameter h. The local impurity phase pinning force
f sets in at h = 1 with exponent β = 2. Saturation value
f(h → ∞) = 1/2, the quadratic threshold behaviour, and the
jumps at the points hn ≈ 2πn+ π/2, n = 1, 2, ... are indicated
by broken lines.

continuum is

εi = 2πV0at1at2c
1/3
3

(
v2

F

vt1vt2

)2/3
1

~vF
, (22)

where c3 is the impurity concentration. The effective dis-
tance between pins is ` = (c3vt1vt2/v

2
F)−1/3. Thus εi is

related to h by

εi = 2πξ h/`. (23)

The applicability of the theory requires ξ to be smaller
than `. Using the values vF = 5 × 107 cm s−1 ≈ 10vt,
∆ = 1000kBT , and an impurity concentration of one ppm
the ratio ξ/` is estimated as 0.01 One can, nevertheless,
conclude that the strong pinning limit in our model, h�
1, also requires large εi. Weak pinning occurs for εi < 1.
The region 0 < h ≤ 1 where local pinning is absent thus
is concealed by weak pinning which is ubiquitous in less
than four dimensions.

5 Descreening

So far we have considered the case of full screening:
There are enough thermally excited quasi–particles (or
normal carriers as in NbSe3) to completely screen out
the Coulomb forces between charge fluctuations associ-
ated with phase deformations. It is known that descreen-
ing stiffens the CDW. This stiffening of the CDW leads to
a corresponding increase of the phason velocity which has
been observed by neutron scattering [17] and explained in
[18] as a descreening effect. In a simple approximation in-
volving only the condensate fraction N < 1 one can define
an effective stiffness constant

Keff =
K

1−N
, (24)

to take care of descreening within the elastic CDW
model [19–22,10,23,24]. Following [24] this is a reasonable



A. Kobelkov et al.: Local impurity phase pinning and pinning force in charge density waves 25

approximation for 1 − N > ζ ≡ εt~vF/(8e2
0) (εt: static

transverse dielectric constant). In the opposite limit
Coulomb interactions require a different approach. The
modified stiffness constant changes the pinning parame-
ter h according to

h→ h
√

1−N ≡ heff , (25)

since a scaling in chain direction becomes necessary to
maintain quasi isotropy. Our earlier formulae hold with
this replacement. When heff becomes less than unity in
decreasing the temperature local impurity phase pinning
stops. The singularity in the local pinning force at heff = 1
is likely to be masked by thermal fluctuations and by weak
pinning.

The fact that local pinning centers require a minimum
strength to act as strong pins is possibly the reason for
the following observation in [25]: The CDW in Ti doped
NbSe3 which is fully screened due to a partially gapped
Fermi surface exhibits weak instead of the expected strong
pinning.

6 Relation to Larkin’s model

We want to point out the similarities and differences in our
approach to Larkin’s model [9] and fill in some additional
information about it.

Larkin uses a single chain model [26] with one impurity
at x = xi. It is defined by the energy functional:

E =
Es

8

∫
dx

[
1− cosϕ(x) +

1

2

(
dϕ(x)

dx

)2
]

+ V0[1− cos(Γ + ϕ(xi))]. (26)

In (26) the length x is scaled to ~vF/(2t⊥). The interchain
coupling energy is denoted by t⊥ and Es = 8t⊥/π is the
energy of a 2π phase soliton [27] (Es is called w in [9]).
From the general theory in [24] which describes the CDW
as a system of coupled chains Larkin’s model follows under
three assumptions:

1. Phases on neighbouring chains are set to zero which
turns the interchain coupling into the Sine–Gordon
type self interaction 1− cosϕ in (26). Thus phases on
different chains are independent. In contrast the phase
varies slowly across the chains in our model, a case
more appropriate to a screened situation.

2. The low temperature or descreened limit is understood
when the quasi–particle fraction 1−N is smaller than
the Coulomb coupling constant ζ.

3. The value ζ of the Coulomb coupling constant men-
tioned in Section 5 is fixed at 1/8. In reality a smaller
value holds because of vF = O(107 cm s−1).

The model (26) has uncharged dipole solutions for which
the phase ϕi = ϕ(xi) at the impurity obeys the matching
condition (h ≡ 4V0/Es)

−2 sin
ϕi

2
= h sinw. (27)

This equation replaces our equation (10). For any solu-

tion ϕ
(1)
i it has another–usually inequivalent–solution ϕ

(2)
i

with ϕ
(2)
i = 2π − ϕ

(1)
i . The elastic energies are Es[1 −

cos(ϕ
(1)
i /2)] and Es[1− cos(ϕ

(2)
i /2)] = Es[1+cos(ϕ

(1)
i /2)].

We consider here the domains 0 ≤ w < 2π and 0 ≤ ϕi <
2π. The model is thus characterized by one metastable
state.

The mechanism of pinning force generation for h < 2
is precisely the same as discussed in Section 4: Transition
from a metastable state with relative energy ∆E which
becomes a horizontal inflection point in the energy profile
E(w,Γ ) for Γ = Γc down to the ground state. The average
pinning force is then:

F =
Q∆E

2π
· (28)

In our model this mechanism prevails for all h > 1 and
more and more metastable states appear for increasing
h. In Larkin’s model no horizontal inflections points exist
for h > 2. Instead two 2π–solitons are created when ϕi
changes by 2π in a corresponding change of Γ . This leads
to F (h > 2) = QEs/π in [9] while the average value of
F (h) increases linearely with h in our model as implied
by the strong pinning concept.

It is possible to study the special case h = 2 analyt-
ically because the exact solution of (27) – expressed as
w = w(Γ ) – is available:

w =
Γ

3
+

4π

3
n, n = 0, 1; w = −Γ + 2π.

From the energy profile

e(w,Γ ) =
E

Es
= 1− cos

w − Γ

2
+
h

2
sin2 w

2
, (29)

and the matching condition (27) one finds

de(w(Γ ), Γ )

dΓ
=
h

4
sinw = −

1

2
sin

w − Γ

2
· (30)

The inflection points for h = 2 are (Γc = 3π/2, wc = π/2),
(Γc = π/2, wc = 3π/2) and a corresponding ground state
is (Γc = 3π/2, wB = 11π/6). Thus one finds

F (h = 2− 0) =
QEs

2π
[e(wc, Γc)− e(wB, Γc)]

=
QEs

4π
cos

π

6
=

3
√

3

8π
QEs · (31)

For h = 2 + 0 the path to follow in the integral

F=−
QEs

2π

∫ 2π

0

dΓ
de

dΓ
= −

QEs

8π
h

∫ 2π

0

dΓ sinw(Γ )

(32)

is continuous and goes from w(0) = 2π to w(Γc) = 3π/2
and then back to w(2π) = 2π resulting in a phase change
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Fig. 3. Reduced pinning force f(h) in units of QEs as function
of pinning parameter h for Larkin’s model. There is no pinning
force below h = 1 and f(h) jumps from 3

√
3/(8π) to the final

value 1/π at h = 2. Note the different normalization of f(h) in
comparison to Figure 2.

of ∆ϕi = −2π. The integration gives

F (h = 2 + 0) =
QEs

π
· (33)

This is the value of the force for all h > 2 as pointed out
in [9].

Further analytical results are found for h < 2. From
the topological condition dΓ/dw = 0 of the critical inflec-
tion point one gets

e(wc, Γc) = 1 +
h

4
−

3

4

√
4− h

4
, (34)

with

wc = arccos

√
4− h

3h2
,

Γc = arccos

√
4− h

3h2
+ 2 arccos

√
n2 − 1

3
· (35)

The perturbative expansion of the force F (h) slightly be-
low h = 2 then leads to

F (h) = F (h = 2− 0)−
QEs

4π

{
√

3 +
1

2

√
1

3

}
√

2− h

+O(2− h). (36)

It is clear that the threshold for pinning is h = 1 because
there are no metastable states for h < 1. The intermediate
regime 1 < h < 2 is treated numerically and the result is
shown in Figure 3. The behaviour near h = 1 is again
F (h) ∼ (h− 1)2 = ε2. The critical exponent is thus β = 2
which seems to be universal for local pinning.

7 Discussion

From its very definition local impurity pinning is expected
to be independent of spatial dimensionality d. This is
born out by our approach. Repeating the calculations of
Section 2 for d = 2 and d = 1 always leads to the central
equation (10). However, the pinning parameter h ≡ hd
is not any more given by (6) which refers to d = 3.
Using half the the mean distance `d � ξ between im-
purities as the distance from the impurity where ϕ van-
ishes it is found that h2 = V0at ln(`2/ξ)/(~vt) for d = 2.
For d = 1 h1 = πV0`1/(2~vF) is obtained. The relation
(23) between the pinning parameter hd and εi becomes
εi = 2πh2/ ln(`2/ξ) for d = 2 and εi = 4h1 for d = 1.
These relations are similar to (23) and do not change the
conclusions significantly. The case d = 1 which does not
require the short distance cut–off ξ is unrealistic since real
CDW are never one–dimensional.

In summary we have studied a solvable model of lo-
cal impurity phase pinning which realizes the local pin-
ning scenario in [5], namely singular points, threshold be-
haviour, and metastable states. In contrast to pinning in
type II superconductors static descreening and the pos-
sible deactivation of local pins at low temperatures are
unique to semiconducting CDW (and spin density) sys-
tems. These results have been obtained within a phase
only model plus some amendments for descreening. Espe-
cially at low temperatures more general models, e.g., those
in [24] which take nonlinear screening (band bending) into
account may be considered.

The authors thank P.B. Littlewood who initiated this study.
They also thank S.N. Artemenko for helpful discussions.
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by L. Gorkov, G. Grüner (Elsevier, Amsterdam, 1990).
27. M.J. Rice, A.R. Bishop, J.A. Krumhansl, S.E.

Trullinger, Phys. Rev. Lett. B 36, 432 (1976).


